(x^2+112)=(16x+131)+0

Simple and best practice solution for (x^2+112)=(16x+131)+0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x^2+112)=(16x+131)+0 equation:



(x^2+112)=(16x+131)+0
We move all terms to the left:
(x^2+112)-((16x+131)+0)=0
We get rid of parentheses
x^2-((16x+131)+0)+112=0
We calculate terms in parentheses: -((16x+131)+0), so:
(16x+131)+0
We add all the numbers together, and all the variables
(16x+131)
We get rid of parentheses
16x+131
Back to the equation:
-(16x+131)
We get rid of parentheses
x^2-16x-131+112=0
We add all the numbers together, and all the variables
x^2-16x-19=0
a = 1; b = -16; c = -19;
Δ = b2-4ac
Δ = -162-4·1·(-19)
Δ = 332
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{332}=\sqrt{4*83}=\sqrt{4}*\sqrt{83}=2\sqrt{83}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-2\sqrt{83}}{2*1}=\frac{16-2\sqrt{83}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+2\sqrt{83}}{2*1}=\frac{16+2\sqrt{83}}{2} $

See similar equations:

| 9-2n=8 | | ((9t+1)/8)=((t+6)/16)+((t-4)/16) | | 7(x-2=5(x+4) | | 8•x+10+2x+4•x+8-6=2(7x+18) | | 19m-13m-3=-15 | | ((3x+15)/7)+((x+14)/4)=7 | | 7(x-2=5x | | 4.6+1.9n=0.04 | | 1+3n+4=-10 | | 34r=3.14 | | Y=1.9x+56 | | ((x-9)/5)+(9/5)=-(x/7) | | 8(3x-5)=17+2(x+9) | | 2(2y-7)-3y=0 | | 4c-c=10 | | -14=-2x+8 | | 2x^2-6x+9=369 | | X-a=7 | | p/3+2=7 | | P=9/4-r | | 6y-3y-1=20 | | Y=5y-33 | | -(7x-(3x+5))=-4-(3(3x-4)-3x) | | 9d-6d=15 | | 4x^2-6x+9=369 | | 9x^2+24x-9= | | X-12+10x=+18-20 | | -3m+1=20 | | -14.5+-1.5x=-31 | | 6=3(d-5) | | 3/8/1/2=n/1/5 | | 15+5=5(3a-2) |

Equations solver categories